Wednesday, December 31, 2014

Maze Generating in C (like Lumosity Penguin Pursuit)

Playing lumosity is fun. Among one of their games, there is a cute maze game.
lumosity game
In that game, however, the goal is not about solving the maze, but about adjusting the direction when the screen flips or rotates.  The point is, generating this kind of maze has computer science theories.  Wikipedia has a great reference (Maze_generation_algorithm).  This fun algorithmic problem is implemented using C.  I used back-trace method, and here it is.
sample output



#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define WIDTH   6
#define HEIGHT  6

struct node {
    int north_wall;
    int west_wall;
    int visited;
    int x;
    int y;
};

void printMaze(int cnt, struct node *cells)
{
    int y,x;
    for (y=0; y<HEIGHT; ++y) {
        for (x=0; x<WIDTH; ++x) {
            struct node *c = cells + ( x + y*WIDTH );
            printf("+");
            if (c->north_wall) {
                if (c->x == 0 && c->y == 0) 
                    printf("  ");
                else
                    printf("--");
            }
            else 
                printf("  ");
        }
        printf("+\n");

        for (x=0; x<WIDTH; ++x) {
            struct node *c = cells + (x + y*WIDTH) ;
            if (c->west_wall) 
                printf("|  ");
            else
                printf("   ");
        }
        printf("|\n");
    }
    
    for (x=0; x<WIDTH-1; ++x) {
        printf("+--");
    }
    printf("+  +\n\n");
}

// rtn is a pointer array.  NWES.
int neighbor(struct node *cells, struct node *cur, struct node **rtn)
{
    int x = cur->x;
    int y = cur->y;
    rtn[0] = rtn[1] = rtn[2] = rtn[3] = NULL;

    if (y-1 >= 0) rtn[0] = cells + (x + (y-1)*WIDTH);
    if (x-1 >= 0) rtn[1] = cells + ((x-1) + y*WIDTH);
    if (x+1 < WIDTH)  rtn[2] = cells + ((x+1) + y*WIDTH);
    if (y+1 < HEIGHT) rtn[3] = cells + (x + (y+1)*WIDTH);

    return rtn[0] != NULL || rtn[1] != NULL ||
           rtn[2] != NULL || rtn[3] != NULL;
}

void shuffle(struct node **array, size_t n) {    
    struct timeval tv;
    gettimeofday(&tv, NULL);
    int usec = tv.tv_usec;
    srand48(usec);

    if (n > 1) {
        size_t i;
        for (i = n - 1; i > 0; i--) {
            size_t j = (unsigned int) (drand48()*(i+1));
            struct node  *t = array[j];
            array[j] = array[i];
            array[i] = t;
        }
    }
}

void punchWall(struct node *node1, struct node *node2)
{
    int x1 = node1->x;
    int y1 = node1->y;
    int x2 = node2->x;
    int y2 = node2->y;

    if (x1 < x2 && y1 == y2)
        node2->west_wall =0;
    if (x2 < x1 && y1 == y2)
        node1->west_wall =0;

    if (y1 > y2 && x1 == x2)
        node1->north_wall =0;
    if (y2 > y1 && x1 == x2)
        node2->north_wall =0;
        
}

void genMaze(struct node *cells, struct node *cur)
{
    int i;
    if (cur->visited == 0) {
        struct node *nei[4];

        cur->visited = 1;
        if (neighbor( cells, cur, nei)) {
            shuffle(nei, 4);
            for (i=0; i<4; ++i) {
                if (nei[i] && nei[i]->visited==0) {
                    punchWall(cur, nei[i]);
                    genMaze(cells, nei[i]);
                }
            }
        }
    }
}

int main(int argc, char **argv) {
    int i;
    struct node cells[ WIDTH * HEIGHT ];

    // Initialize Cells
    for (i=0; i < WIDTH*HEIGHT; ++i) {
        cells[i].north_wall = cells[i].west_wall = 1;
        cells[i].visited = 0;
        cells[i].x = i % WIDTH;
        cells[i].y = i / WIDTH;
    }
    genMaze(cells, &cells[0]);
    printMaze(WIDTH * HEIGHT, cells);
    return 0;
}


Thursday, December 25, 2014

Quick Example of Red Black Tree.

In previous articles, FreeBSD AVL tree is ported to Linux and a usage example is presented.
Linux uses red-black tree instead of AVL.  Just searching for rbtree.h in Linux kernel returned so many components such as ext4.  But, rbtree can't be used in user space in kernel source form.  Luckily there is user-space ported rbtree in here.

That code contains a test code.  Here, I post one more example.  My example is the same test written in AVL test code (here).

By the way, using these codes have advantage of efficiency.
Enjoy.



#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include "rbtree.h"
#include "rbtree_test.h"


void printTree(RBRootType *root)
{
 int count = 0;
 Person *data, *rootdata;
 RBNodeType *cur;

 rootdata = container_of( root->rb_node, Person, node);
 printf("Root node: %s\n", rootdata->name);
 
 cur = rb_first(root);
 while (cur) {
  data = container_of( cur, Person, node);
  printf("%d : %s(%s)\n", count, data->name, data->phone);
  cur = rb_next(cur);
  count++;
 }
 printf("Total nodes in tree: %d\n", count);
 printf("---------------------------------------------------------------------\n");

}

Person* searchPerson(RBRootType *root, char *name)
{
 RBNodeType *curnode = root->rb_node;
 while (curnode) {
  Person *data = container_of(curnode, Person, node);
  int result;

  result = strcmp(name, data->name);

  if (result < 0)
   curnode = curnode->rb_left;
  else if (result > 0)
   curnode = curnode->rb_right;
  else
   return data;
 }
 return NULL;
}

int insertPerson(RBRootType *root, Person *data)
{
 RBNodeType **new = &(root->rb_node), *parent = NULL;
 while (*new) {
  Person *cur = container_of(*new, Person, node);
  int result = strcmp(data->name, cur->name);
  
  parent = *new;
  if (result < 0)
   new = &((*new)->rb_left);
  else if (result > 0)
   new = &((*new)->rb_right);
  else 
   return 0;
 }
 
 // New node
 rb_link_node(&(data->node), parent, new);
 rb_insert_color(&(data->node), root);

 return 1;
}


int main(int argc, char **argv)
{
 RBRootType mytree = RB_ROOT;

 Person a;
 memset(&a, '\0', sizeof a);
 strncpy(a.name, "Micheal Smith", 14);
 strncpy(a.phone, "1112223333", 11);
 insertPerson(&mytree, &a);

 Person b;
 memset(&b, '\0', sizeof b);
 strncpy(b.name, "Jack Stuart", 12);
 strncpy(b.phone, "2223334444", 11);
 insertPerson(&mytree, &b);
 
 
 Person *srch = NULL;
 printTree(&mytree);
 
 if ( (srch = searchPerson(&mytree, "Micheal Smith")) != NULL ) 
  printf("Micheal found: %s\n", srch->phone);
 else
  printf("Micheal not found.\n");

 if ( (srch = searchPerson(&mytree, "Jack Stuart")) != NULL ) 
  printf("Jack found: %s\n", srch->phone);
 else
  printf("Jack not found.\n");
 printf("--------------------------------------------------\n");
 
 /**
  *          Mike
  *          /  
  *        Jack
  */

 // If I add Andrew, it's unbalanced.
 Person c;
 memset(&c, '\0', sizeof c);
 strcpy(c.name, "Andrew Kudos");
 strcpy(c.phone, "3334445555");
 insertPerson(&mytree, &c);

 //traverse!!  root must be Jack.
 printTree(&mytree);

 
 return 0;
}

Monday, December 8, 2014

Sample Usage of AVL, quick and dirty.

So, previous article ported FreeBSD AVL into Linux AVL. (AVL Tree in C )
Here is quick and dirty way of how to use it.
It will be straightforward, except one thing.

Your data struct must be divided into two pieces.  Data part and avl_node_t part.  The Data part size must be multiple of 8.  If not, there will be a puzzling assert((offset & 0x7) == 0).  Here is the usage.  For convinience, I put the link part the first.  This will easy to cast type between (avl_node_t) and (struct person) with the same pointer.


#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include "avl.h"

#define NAME_LEN 36
#define PHONE_LEN 10

// assuming dtype has a link member as node type (avl_node_t)
#define OFFSETOF(data) 0

typedef struct person {
 avl_node_t  my_link; 
 char name[ NAME_LEN + 1];
 char phone[ PHONE_LEN + 1];
} Person;

int comparePerson(const void *a, const void *b) 
{
 Person *_a = (Person *)a;
 Person *_b = (Person *)b;
 if ( strncmp(_a->name, _b->name, NAME_LEN) < 0 )
  return -1;
 else if ( strncmp(_a->name, _b->name, NAME_LEN) > 0 )
  return 1;
 return 0;
}

Person* searchByName(avl_tree_t *tree, const char *name)
{
 Person *cur = AVL_NODE2DATA(tree->avl_root, tree->avl_offset);
 avl_node_t *p;
 while (cur) {
  if (strcmp(cur->name, name) == 0)
   return cur;
  else if (strcmp(name, cur->name) <0) {
   p = AVL_DATA2NODE( cur, tree->avl_offset );
   p = p->avl_child[0];
  }
  else {
   p = AVL_DATA2NODE( cur, tree->avl_offset );
   p = p->avl_child[1];
  }
  cur = p ? AVL_NODE2DATA( p, tree->avl_offset) : NULL;
 }
 return NULL;
}

void printTree(avl_tree_t *tree)
{
 int i = 0;
 Person *cur;

 printf("Total nodes in tree: %ld\n", avl_numnodes(tree));
 printf("Root: %s\n", ((Person *)(AVL_NODE2DATA( tree->avl_root, tree->avl_offset)))->name);

 cur = avl_first(tree);
 while (cur) {
  printf("%d : %s(%s)\n", i, cur->name, cur->phone);
  cur = AVL_NEXT(tree, cur);
  i++;
 }
 printf("---------------------------------------------------------------------\n");
}

int main(int argc, char **argv)
{
 avl_tree_t avl;

 Person a;
 memset(&a, '\0', sizeof a);
 strncpy(a.name, "Micheal Smith", 14);
 strncpy(a.phone, "1112223333", 11);
 avl_create(&avl, comparePerson, sizeof(Person), OFFSETOF(&a));
 avl_add(&avl, &a);

 Person b;
 memset(&b, '\0', sizeof b);
 strncpy(b.name, "Jack Stuart", 12);
 strncpy(b.phone, "2223334444", 11);
 avl_add(&avl, &b);

 //traverse 
 printTree(&avl);

 /**
  *          Mike
  *          /  
  *        Jack
  */

 // If I add Andrew, it's unbalanced.
 Person c;
 memset(&c, '\0', sizeof c);
 strcpy(c.name, "Andrew Kudos");
 strcpy(c.phone, "3334445555");
 avl_add(&avl, &c);

 //traverse!!  root must be Jack.
 printTree(&avl);

 // Searching.
 Person *search;
 search = searchByName(&avl, "Jack Stuart");
 if (search) 
  printf("Jack found: %s\n", search->name);
 else
  printf("Jack not found\n");

 search = searchByName(&avl, "lalalalala");
 if (search)
  printf("lala found:\n");
 else
  printf("lala not found\n");

 return 0;
}

AVL Tree in C

I ported FreeBSD avl implementation into Linux users pace version.
Code is here(github link).

Practically speaking, we don't need AVL tree these days in high level languages like Python.  There are good alternatives in general.  In algorithm perspective, there is a Red Black Tree, the rival of AVL tree.  They mostly serve for the similar purpose.  RBTree is easier to implement, but size is factor of 2 vs. AVL is 1.4.  Linux uses RBTree internally, and FreeBSD had AVL.  (Linux RBTree article)

Well, in day to day life, modern languages provide their own version of "List".  In Python case, we just stuff data into the list, and later call it by index.  For efficient search, we use bisect module.  If we need sort, Python list takes very "Intelligent" approach to be efficient.  I will discuss this later, but listsort.txt in Python source can be referenced.

But, then, why bother AVL tree?
First, it's mentioned more in different algorithm books probably thanks to BST (Binary Search Tree).  And, AVL is a good subject to introduce concepts of algorithm, "let's cover the weakness of a given algorithm."  Second, it's personal.  I just like it with no reason.

When I searched AVL written in C, I found many pages.  First, GNU libavl is an overkill.  Other small projects are not mature enough.  Either it's "not generic", or data allocation logic is "malloc".  This will cost performance.  Modern days, C is chosen by performance in many cases.  So, too many or individual malloc is a bigger penalty.

Interestingly, FreeBSD has avl implementation and they still include it even today.  Probably, former SunOS used avl for kernel data.  This is small.  This only implements AVL algorithm, but comparator is a function pointer which I can attach.  AVL node does not bother the data, but my data suppose to embed avl_node_t.  And, AVL algorithm doesn't do high-level search.  So, I have to provide the high level search, like searchByName(const char *key).  I liked the design  because it is more flexible.  Unfortunately, it's not directly usable in Linux.  So, I tweaked and made it usable in Linux.  There are two files (avl.h and avl.c).  Enjoy.